Acta Cryst. (1974). B30, 2754

Hydroxy-17β Nor-19 Prégnadiène-4,9 Yne-20 One-3 Méthyl-18 Méthoxy-11

PAR JEAN-PAUL MORNON, GENEVIÈVE LEPICARD ET JEAN DELETTRÉ Laboratoire de Minéralogie-Cristallographie, associé au CNRS, Université Paris VI, Tour 16, 4 place Jussieu, 75230 Paris Cedex 05, France

(Reçu le 10 avril 1974, accepté le 14 mai 1974)

Abstract. $C_{22}O_3H_{28}$, orthorhombic, space group $P2_12_12_1$, $a=18\cdot14$, $b=11\cdot81$, $c=8\cdot56$ Å, Z=4. The structure was solved by direct methods. Full-matrix least-squares refinement converged at R=0.05 for 2034 observed reflexions with identical weights. The molecule has a general curved shape.

Introduction. L'étude de l'hydroxy- 17β nor-19 prégnadiène-4,9 yne-20 one-3 méthyl-18 méthoxy-11 fait suite à celles déjà décrites (Lepicard, Delettré & Mor-

Fig. 1. Projection de la structure selon l'axe b.

Fig. 2. Vue stéréoscopique de la structure (selon l'axe c).

Tableau 1. Coordonnées et paramètres d'agitation thermique

	x	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	B_{eq}
O(1)	190 (2)	-823(3)	8673 (4)	36 (1)	101 (3)	209 (7)	-10(2)	21 (3)	37 (4)	5.5
O(2)	4483 (2)	4726 (2)	8476 (3)	31 (1)	74 (2)	127 (5)	-17 (1)	-4(2)	-2(3)	4.0
O(3)	2455 (2)	3384 (2)	4593 (3)	29 (1)	72 (2)	91 (4)	0 (1)	-5(2)	17 (3)	3.5
C(1)	970 (2)	1590 (4)	6626 (6)	19 (1)	71 (4)	183 (8)	2 (2)	-1(3)	15 (5)	4.0
C(2)	561 (2)	1029 (4)	7965 (5)	25 (1)	80 (4)	159 (8)	2(2)	11 (3)	-4(5)	4.1
C(3)	635 (2)	-237(4)	7968 (5)	26 (1)	91 (4)	109 (6)	-9(2)	-4(3)	17 (5)	3.9
C(4)	1277 (2)	-717(4)	7175 (5)	29 (1)	76 (4)	109 (6)	-4(2)	-7(3)	6 (4)	3.8
C(5)	1828 (2)	-53(3)	6607 (4)	26 (1)	63 (3)	61 (5)	0(2)	-10(2)	-6(3)	2,9
C (6)	2537 (2)	-546(3)	6023 (4)	30 (Ì)	59 (3)	94 (6)	3 (2)	1(2)	-14(4)	3.3
C (7)	3181 (2)	99 (3)	6722 (4)	24 (1)	56 (3)	106 (6)	8 (2)	2(2)	-11(4)	3.1
C(8)	3141 (2)	1369 (3)	6373 (4)	22 (Ì)	55 (3)	83 (5)	4(2)	6 (2)	-7(4)	28
C(9)	2359 (2)	1839 (3)	6406 (4)	21(1)	58 (3)	65 (5)	2(2)	$\tilde{0}(\bar{2})$	-3(3)	2,0
C(10)	1763 (2)	1172 (3)	6557 (4)	23 (I)	61 (3)	76 (5)	$\overline{2}(\overline{2})$	-3(2)	3(4)	2,9
C(11)	2312 (2)	3110 (3)	6223 (4)	23 (1)	63 (3)	81 (5)	$\vec{3}(\vec{2})$	3(2)	7 (3)	3,0
C(12)	2853 (2)	3768 (3)	7275 (4)	20 (1)	53 (3)	109 (6)	2(1)	$\bar{3}(\bar{2})$	-8(4)	2.9
C(13)	3642 (2)	3318 (3)	7253 (4)	20 (1)	57 (3)	89 (5)	$\overline{0}(2)$	6(2)	-2(4)	2.8
C(14)	3604 (2)	2028 (3)	7537 (4)	19 (1)	52 (3)	94 (6)	4 (I)	4 (2)	-6(3)	2.7
C(15)	4409 (2)	1676 (4)	7789 (5)	22 (1)	72 (3)	148 (7)	8 (2)	-7(3)	-15(5)	3.8
C(16)	4726 (2)	2666 (4)	8737 (5)	22 (1)	83 (4)	149 (7)	6 (2)	-10(3)	-26(5)	4.0
C(17)	4141 (2)	3649 (3)	8674 (4)	21 (1)	64 (3)	106 (5)	-3(3)	-1(2)	-3(4)	3.1
C(18)	3723 (2)	3687 (3)	10162 (4)	24 (1)	57 (3)	99 (6)	-3(2)	-7(2)	1 (4)	3.1
C(19)	3430 (2)	3763 (4)	11394 (5)	32 (1)	81 (4)	102 (6)	-2(2)	2 (3)	-4(4)	3.9
C(20)	4060 (2)	3623 (4)	5704 (5)	27 (1)	86 (4)	106 (6)	-9(2)	15 (3)	-3(5)	3.8
C(21)	3976 (3)	4847 (4)	5147 (5)	43 (2)	84 (4)	119 (7)	-16(2)	10 (3)	14 (5)	4.6
C(22)	1836 (3)	3109 (4)	3645 (5)	38 (1)	94 (4)	113 (6)	1 (2)	-17(3)	15 (5)	4,5

Tableau 1 (suite)

	x	У	Z	В
H(1)	1327 (26)	- 1683 (43)	7469 (60)	2,4 (1,1)
H(2)	2545 (29)	-440(42)	4902 (61)	2,9 (1,2)
H(3)	2606 (25)	- 1389 (40)	6320 (57)	2,1(1,0)
H(4)	3254 (29)	2 (45)	8066 (63)	3,0 (1,2)
H(5)	3648 (32)	-209(51)	6477 (76)	4,3 (1,5)
H(6)	3328 (30)	1454 (50)	5286 (68)	3,3 (1,4)
H(7)	3310 (29)	1960 (44)	8520 (67)	3,6 (1,2)
H(8)	4433 (27)	962 (42)	8338 (63)	2,0 (1,2)
H(9)	4698 (28)	1612 (47)	6863 (66)	3,0 (1,3)
H(10)	5312 (36)	2922 (54)	8304 (82)	6,0 (1,7)
H(11)	4874 (31)	2361 (54)	9764 (73)	4,2 (1,4)
H(12)	3852 (32)	3035 (49)	4939 (73)	5,2 (1,5)
H(13)	4708 (28)	3512 (45)	5882 (61)	2,9 (1,2)
H(14)	3489 (32)	5106 (51)	4785 (71)	4,6 (1,4)
H(15)	4306 (32)	4978 (48)	4063 (69)	3,7 (1,4)
H(16)	4140 (38)	5514 (55)	5884 (81)	4,9 (1,7)
H(17)	2859 (25)	4630 (40)	7030 (56)	1,5 (1,0)
H(18)	2616 (24)	3722 (40)	8527 (57)	1,7 (1,0)
H(19)	1749 (24)	3472 (39)	6447 (55)	1,5 (1,0)
H(20)	664 (29)	1306 (49)	5654 (64)	3,0 (1,3)
H(21)	3228 (31)	3863 (50)	12348 (71)	4.2 (1,4)
H(22)	4719 (30)	4911 (47)	9192 (68)	6,3 (1,3)
H(23)	939 (22)	2414 (35)	6640 (50)	1,3 (0,8)
H(24)	71 (30)	1307 (48)	7814 (65)	2,8 (1,2)
H(25)	823 (34)	1233 (53)	9091 (77)	6,5 (1,6)
H(26)	1391 (28)	3616 (46)	3997 (64)	3,0 (1,2)
H(27)	1719 (27)	2198 (42)	3700 (62)	2,0 (1,7)
H(28)	1921 (32)	3296 (51)	2754 (72)	4,1 (1,4)

non, 1973, 1974; Delettré, Mornon & Lepicard, 1974). Elle présente un intérêt particulier en raison de la faible activité progestomimétique de ce stéroïde. 2034 réflexions ont été mesurées sur un diffractomètre automatique Siemens avec la longueur d'onde Cu K α . La structure a été déterminée par le programme MULTANaprès plusieurs essais. Avant la très facile visualisation des 27 atomes d'hydrogène sur série différence, l'indice R obtenu par affinement par moindres carrés possédait la valeur 0,09, sa valeur finale est 0,05.* Les coordonnées et les facteurs de température des atomes figurent dans le Tableau 1.

Discussion. La conformation de cette molécule est remarquable; en effet, le 'plan' des quatre cycles A, B, C, D peut s'enrouler sur un cylindre de rayon 6 Å (Figs. 1–5). Cette conformation particulière pourrait être la conséquence, en grande partie, d'interactions préférentielles entre O(3) et deux atomes d'hydrogène du groupe éthyl: O(3) \cdots H(12): 2,58 Å, O(3) \cdots C(20): 3,07 Å, O(3)-H(12)-C(20): 109°, O(3) \cdots H(14): 2,77 Å, O(3) \cdots C(21): 3,29 Å, O(3)-H(14)-C(21): 113°.

Le groupement méthoxy se trouvant ainsi orienté parallèlement à la direction d'allongement de la molécule contraindrait les cycles A et B à pivoter autour de la jonction B/C pour prendre une configuration courbe. L'hypothèse, selon laquelle la présence du groupe méthoxy-11 impliquerait une gêne stérique entre le hydroxy-17 et le groupe éthyl en C(13), ne paraît donc pas vérifiée (Lepicard *et al.*, 1973). Il faudrait plutôt voir dans la courbure générale de la molécule et dans sa possible rigidité une 'explication' de son inactivité biologique.

L'organisation cristalline comporte plusieurs contacts intermoléculaires rapprochés: O(3) $x, y, z \cdots$ C(19) x, y, z - 1: 3,29 Å, O(3)-H(21)-C(19): 156°, O(2) $x, y, z \cdots O(1) \frac{1}{2} + x, \frac{3}{2} - y, 2 - z$: 3,04 Å, O(2)-H(22)-O(1): 165°, O(2) $x, y, z \cdots C(15) 1 - x, y - \frac{1}{2}, \frac{3}{2} - z$: 3,24 Å, O(2)-H(9)-C(15): 117°. Une discussion détaillée sera présentée en conclusion de l'étude de cette série.

Nous remercions la société Roussel Uclaf de nous avoir confié cette étude.

Références

- LEPICARD, G., DELETTRÉ, J. & MORNON, J.-P. (1973). Acta Cryst. B29, 1723–1725.
- LEPICARD, G., DELETTRÉ, J. & MORNON, J.-P. (1974). Acta Cryst. B30, 2751–2753.
- DELETTRÉ, J., MORNON, J.-P. & LEPICARD, G. (1974). Acta Cryst. Sous presse.

Fig. 3. Vue perspective de la molécule.

Fig. 4. Représentation de la molécule, ellipsoïde thermiques à 50% de probabilité.

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 30496: 13 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, Angleterre.

Fig. 5. Numérotation des atomes et angles dièdres; distances (Å), $\sigma = 0.01$ Å et angles (°), $\sigma = 0.8^{\circ}$.